Physics – Condensed Matter – Materials Science
Scientific paper
2009-01-15
PMC Physics B 2008, 1:2
Physics
Condensed Matter
Materials Science
15 pages, 12 figures
Scientific paper
10.1186/1754-0429-1-2
Of the perovskites, ABX_<3>, a subset of special interest is the family in which the A site is occupied by a lanthanide ion, the B site by a rare earth and X is oxygen, as such materials often exhibit a large change in electrical resistance in a magnetic field, a phenomenon known as "colossal" magnetoresistance (MR). Two additional phenomena in this family have also drawn attention: the metal-insulator transition (MIT) and electroresistance (ER). The MIT is revealed by measuring resistance as a function of temperature, and observing a change in the sign of the gradient. ER - the dependence of the resistance on applied current - is revealed by measuring resistance as a function of applied current. Up until now, the phenomena of MIT and ER have been treated separately. Here we report simultaneous observation of the MIT and ER in the lanthanum/calcium manganites. We accomplish this by measuring voltage-current curves over a wide temperature range (10-300 K) allowing us to build up an experimental voltage surface over current-temperature axes. These data directly lead to resistance surfaces. This approach provides additional insight into the phenomena of electrical transport in the lanthanum/calcium manganites, in particular the close connection of the maximum ER to the occurrence of the MIT in those cases of a paramagnetic insulator (PMI) to ferromagnetic metal (FMM) transition.
Knott J. C.
Lewis Raymond A.
Pond D. C.
No associations
LandOfFree
Metal-insulator transition and electroresistance in lanthanum/calcium manganites La_<1-x>Ca_<x>MnO_<3> (x = 0-0.5) from voltage-current-temperature surfaces does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Metal-insulator transition and electroresistance in lanthanum/calcium manganites La_<1-x>Ca_<x>MnO_<3> (x = 0-0.5) from voltage-current-temperature surfaces, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Metal-insulator transition and electroresistance in lanthanum/calcium manganites La_<1-x>Ca_<x>MnO_<3> (x = 0-0.5) from voltage-current-temperature surfaces will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-590035