Nonequilibrium Effects and Self Heating in Single Electron Coulomb Blockade Devices

Physics – Condensed Matter

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

The abstract for an earlier post is incomplete. The correct one is given here. No revision for the content of the paper. 39 pa

Scientific paper

We present a comprehensive investigation of nonequilibrium effects and self heating in single electron transfer devices based primarily on the Coulomb blockade effect. During an electron trapping process, a hot electron may be deposited in a quantum dot or metal island, with an extra energy usually on the order of the Coulomb charging energy, which is much higher than the temperature in typical experiments. The hot electron may relax through three channels: tunneling back and forth to the feeding lead (or island), emitting phonons, and exciting background electrons. Depending on the magnitudes of the rates in the latter two channels relative to the device operation frequency and to each other, the system may be in one of three different regimes: equilibrium, non-equilibrium, and self heating (partial equilibrium). In the quilibrium regime, a hot electron fully gives up its energy to phonons within a pump cycle. In the nonequilibrium regime, the relaxation is via tunneling with a distribution of characteristic rates; the approach to equilibrium goes like a power law of time (frequency) instead of an exponential. This channel is plagued completely in the continuum limit of the single electron levels. In the self heating regime, the hot electron thermalizes quickly with background electrons, whose temperature $T_e$ is elevated above the lattice temperature $T_l$. We have calculated the coefficient in the well known $T^5$ law of energy dissipation rate, and compared the results to experimental values for aluminum and copper islands and for a two dimensional semiconductor quantum dot. Moreover, we have obtained different scaling relations between the electron temperature and operation frequency and device size for various types of devices.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Nonequilibrium Effects and Self Heating in Single Electron Coulomb Blockade Devices does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Nonequilibrium Effects and Self Heating in Single Electron Coulomb Blockade Devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nonequilibrium Effects and Self Heating in Single Electron Coulomb Blockade Devices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-549755

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.