Physics – Condensed Matter – Statistical Mechanics
Scientific paper
2001-09-10
Physics
Condensed Matter
Statistical Mechanics
18 pages, 8 figures
Scientific paper
10.1103/PhysRevA.65.033611
We use a generalized Gross-Pitaevskii equation for the condensate and a semi-classical kinetic equation for the noncondensate atoms to discuss the scissors mode in a trapped Bose-condensed gas at finite temperatures. Both equations include the effect of $C_{12}$ collisions between the condensate and noncondensate atoms. We solve the coupled moment equations describing oscillations of the quadrupole moments of the condensate and noncondensate components to find the collective mode frequencies and collisional damping rates as a function of temperature. Our calculations extend those of Gu\'ery-Odelin and Stringari at T=0 and in the normal phase. They complement the numerical results of Jackson and Zaremba, although Landau damping is left out of our approach. Our results are also used to calculate the quadrupole response function, which is related to the moment of inertia. It is shown explicitly that the moment of inertia of a trapped Bose gas at finite temperatures involves a sum of an irrotational component from the condensate and a rotational component from the thermal cloud atoms.
No associations
LandOfFree
Finite temperature theory of the scissors mode in a Bose gas using the moment method does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Finite temperature theory of the scissors mode in a Bose gas using the moment method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Finite temperature theory of the scissors mode in a Bose gas using the moment method will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-527908