COSMOLOGICAL EXPERIMENTS IN SUPERFLUIDS AND SUPERCONDUCTORS

Physics – Condensed Matter

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Latex manuscript, no figures

Scientific paper

Evolution of the order parameter in condensed matter analogues of cosmological phase transitions is discussed. It is shown that the density of the frozen-out topological defects is set by the competition between the quench rate -- the rate at which the phase transition is taking place -- and the relaxation rate of the order parameter. More specifically, the characteristic domain size which determines the typical distance separating topological defects in the new broken symmetry phase (and, therefore, their density) is determined by the correlation length at the instant at which the relaxation timescale of the order parameter is equal to the time from the phase transition. This scenario shares with the Kibble mechanism the idea that topological defects will appear ``in between'' domains with independently chosen broken symmetry vacuum. However, it differs from the original proposal in estimating the size of such domains through the non-equilibrium aspects of the transition (quench rate), rather than through the Ginzburg temperature at which thermally activated symmetry restoration can still occur in the correlation - length sized volumes of the broken symmetry phase. This scenario can be employed to analyze recent superfluid quench experiments carried out in bulk He$^4$ to study the analogue of the ``cosmological'' prediction of significant vortex line production. It can be also applied to superfluid quenches in annular geometry, as well as to the rapid phase transition from the normal metal to superconductor, where the symmetry breaking occurs in the order parameter with the local (rather than a global) gauge. Cosmological implications of the revised defect formation scenario with the critical domain size set by the freeze-out time rather than by the Ginzburg temperature are also briefly considered.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

COSMOLOGICAL EXPERIMENTS IN SUPERFLUIDS AND SUPERCONDUCTORS does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with COSMOLOGICAL EXPERIMENTS IN SUPERFLUIDS AND SUPERCONDUCTORS, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and COSMOLOGICAL EXPERIMENTS IN SUPERFLUIDS AND SUPERCONDUCTORS will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-51567

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.