Physics – Condensed Matter
Scientific paper
2003-06-23
Physics
Condensed Matter
11 pages, 3 figures, keybords: Complex adaptive systems, Agent-based models, Social systems
Scientific paper
10.1103/PhysRevE.68.026118
A simple model for cooperation between "selfish" agents, which play an extended version of the Prisoner's Dilemma(PD) game, in which they use arbitrary payoffs, is presented and studied. A continuous variable, representing the probability of cooperation, $p_k(t) \in$ [0,1], is assigned to each agent $k$ at time $t$. At each time step $t$ a pair of agents, chosen at random, interact by playing the game. The players update their $p_k(t)$ using a criteria based on the comparison of their utilities with the simplest estimate for expected income. The agents have no memory and use strategies not based on direct reciprocity nor 'tags'. Depending on the payoff matrix, the systems self-organizes - after a transient - into stationary states characterized by their average probability of cooperation $\bar{p}_{eq}$ and average equilibrium per-capita-income $\bar{p}_{eq},\bar{U}_\infty$. It turns out that the model exhibit some results that contradict the intuition. In particular, some games which - {\it a priory}- seems to favor defection most, may produce a relatively high degree of cooperation. Conversely, other games, which one would bet that lead to maximum cooperation, indeed are not the optimal for producing cooperation.
No associations
LandOfFree
Cooperation and Self-Regulation in a Model of Agents Playing Different Games does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Cooperation and Self-Regulation in a Model of Agents Playing Different Games, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Cooperation and Self-Regulation in a Model of Agents Playing Different Games will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-513346