Numerical Contractor Renormalization applied to strongly correlated systems

Physics – Condensed Matter – Strongly Correlated Electrons

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Proceedings of the conference on 'Effective Models for Low-Dimensional Strongly Correlated Systems', Peyresq, September 2005.

Scientific paper

10.1063/1.2178028

We demonstrate the utility of effective Hamilonians for studying strongly correlated systems, such as quantum spin systems. After defining local relevant degrees of freedom, the numerical Contractor Renormalization (CORE) method is applied in two steps: (i) building an effective Hamiltonian with longer ranged interactions up to a certain cut-off using the CORE algorithm and (ii) solving this new model numerically on finite clusters by exact diagonalization and performing finite-size extrapolations to obtain results in the thermodynamic limit. This approach, giving complementary information to analytical treatments of the CORE Hamiltonian, can be used as a semi-quantitative numerical method to study frustrated magnets (as the S=1/2 kagome lattice) or doped systems.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Numerical Contractor Renormalization applied to strongly correlated systems does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Numerical Contractor Renormalization applied to strongly correlated systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Numerical Contractor Renormalization applied to strongly correlated systems will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-500801

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.