Statistical mechanical foundations of power-law distributions

Physics – Condensed Matter – Statistical Mechanics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

19 pages, no figures. Invited talk at Anomalous Distributions, Nonlinear Dynamics and Nonextensivity, Santa Fe, USA, November

Scientific paper

10.1016/j.physd.2004.01.010

The foundations of the Boltzmann-Gibbs (BG) distributions for describing equilibrium statistical mechanics of systems are examined. Broadly, they fall into: (i) probabilistic paaroaches based on the principle of equal a priori probability (counting technique and method of steepest descents), law of large numbers, or the state density considerations and (ii) a variational scheme -- maximum entropy principle (due to Gibbs and Jaynes) subject to certain constraints. A minimum set of requirements on each of these methods are briefly pointed out: in the first approach, the function space and the counting algorithm while in the second, "additivity" property of the entropy with respect to the composition of statistically independent systems. In the past few decades, a large number of systems, which are not necessarily in thermodynamic equilibrium (such as glasses, for example), have been found to display power-law distributions, which are not describable by the above-mentioned methods. In this paper, parallel to all the inquiries underlying the BG program described above are given in a brief form. In particular, in the probabilistic derivations, one employs a different function space and one gives up "additivity" in the variational scheme with a different form for the entropy. The requirement of stability makes the entropy choice to be that proposed by Tsallis. From this a generalized thermodynamic description of the system in a quasi-equilibrium state is derived. A brief account of a unified consistent formalism associated with systems obeying power-law distributions precursor to the exponential form associated with thermodynamic equilibrium of systems is presented here.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Statistical mechanical foundations of power-law distributions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Statistical mechanical foundations of power-law distributions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Statistical mechanical foundations of power-law distributions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-478785

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.