Physics – Condensed Matter – Other Condensed Matter
Scientific paper
2007-03-11
J. Phys. B: At. Mol. Opt. Phys. 42, 044016 (2009)
Physics
Condensed Matter
Other Condensed Matter
9 pages, 4 figures
Scientific paper
We discuss several issues important for experimentally observing Efimov physics in ultracold quantum gases. By numerically solving the three-boson Schr\"odinger equation over a broad range of scattering lengths and energies, and by including model potentials with multiple bound states, we address the complications of relating experimental observations to available analytic expressions. These more realistic potentials introduce features that can mask the predicted Efimov physics at small scattering lengths. They also allow us to verify that positive and negative scattering lengths are universally connected only across a pole, not across a zero. Additionally, we show that the spacing between Efimov features for the relatively small scattering lengths accessible experimentally fail to precisely follow the geometric progression expected for Efimov physics. Finally, we emphasize the importance of the short-range three-body physics in determining the position of Efimov features and show that theoretically reproducing two-body physics is not generally sufficient to predict three-body properties quantitatively.
D'Incao Jose P.
Esry B. D.
Greene Chris H.
No associations
LandOfFree
The short-range three-body phase and other issues impacting the observation of Efimov physics in ultracold quantum gases does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The short-range three-body phase and other issues impacting the observation of Efimov physics in ultracold quantum gases, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The short-range three-body phase and other issues impacting the observation of Efimov physics in ultracold quantum gases will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-45526