Nonlinear electrochemical relaxation around conductors

Physics – Condensed Matter – Materials Science

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

25 pages, 17 figures, 4 tables

Scientific paper

10.1103/PhysRevE.74.011501

We analyze the simplest problem of electrochemical relaxation in more than one dimension - the response of an uncharged, ideally polarizable metallic sphere (or cylinder) in a symmetric, binary electrolyte to a uniform electric field. In order to go beyond the circuit approximation for thin double layers, our analysis is based on the Poisson-Nernst-Planck (PNP) equations of dilute solution theory. Unlike most previous studies, however, we focus on the nonlinear regime, where the applied voltage across the conductor is larger than the thermal voltage. In such strong electric fields, the classical model predicts that the double layer adsorbs enough ions to produce bulk concentration gradients and surface conduction. Our analysis begins with a general derivation of surface conservation laws in the thin double-layer limit, which provide effective boundary conditions on the quasi-neutral bulk. We solve the resulting nonlinear partial differential equations numerically for strong fields and also perform a time-dependent asymptotic analysis for weaker fields, where bulk diffusion and surface conduction arise as first-order corrections. We also derive various dimensionless parameters comparing surface to bulk transport processes, which generalize the Bikerman-Dukhin number. Our results have basic relevance for double-layer charging dynamics and nonlinear electrokinetics in the ubiquitous PNP approximation.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Nonlinear electrochemical relaxation around conductors does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Nonlinear electrochemical relaxation around conductors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nonlinear electrochemical relaxation around conductors will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-446854

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.