Physics – Condensed Matter – Materials Science
Scientific paper
2010-06-07
Phys. Rev. E 82, 021605 (2010)
Physics
Condensed Matter
Materials Science
26 pages, 5 figures; submitted to Phys. Rev. E
Scientific paper
The dynamics of phase field crystal (PFC) modeling is derived from dynamical density functional theory (DDFT), for both single-component and binary systems. The derivation is based on a truncation up to the three-point direct correlation functions in DDFT, and the lowest order approximation using scale analysis. The complete amplitude equation formalism for binary PFC is developed to describe the coupled dynamics of slowly varying complex amplitudes of structural profile, zeroth-mode average atomic density, and system concentration field. Effects of noise (corresponding to stochastic amplitude equations) and species-dependent atomic mobilities are also incorporated in this formalism. Results of a sample application to the study of surface segregation and interface intermixing in alloy heterostructures and strained layer growth are presented, showing the effects of different atomic sizes and mobilities of alloy components. A phenomenon of composition overshooting at the interface is found, which can be connected to the surface segregation and enrichment of one of the atomic components observed in recent experiments of alloying heterostructures.
Elder K. R.
Huang Zhi-Feng
Provatas Nikolas
No associations
LandOfFree
Phase field crystal dynamics for binary systems: Derivation from dynamical density functional theory, amplitude equation formalism, and applications to alloy heterostructures does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Phase field crystal dynamics for binary systems: Derivation from dynamical density functional theory, amplitude equation formalism, and applications to alloy heterostructures, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Phase field crystal dynamics for binary systems: Derivation from dynamical density functional theory, amplitude equation formalism, and applications to alloy heterostructures will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-367853