Physics – Condensed Matter – Statistical Mechanics
Scientific paper
2006-01-03
Phys. Rev. E 73, 066115 (2006)
Physics
Condensed Matter
Statistical Mechanics
20 pages, 22 figures
Scientific paper
10.1103/PhysRevE.73.066115
Motivated by a synchronization problem in distributed computing we studied a simple growth model on regular and small-world networks, embedded in one and two-dimensions. We find that the synchronization landscape (corresponding to the progress of the individual processors) exhibits Kardar-Parisi-Zhang-like kinetic roughening on regular networks with short-range communication links. Although the processors, on average, progress at a nonzero rate, their spread (the width of the synchronization landscape) diverges with the number of nodes (desynchronized state) hindering efficient data management. When random communication links are added on top of the one and two-dimensional regular networks (resulting in a small-world network), large fluctuations in the synchronization landscape are suppressed and the width approaches a finite value in the large system-size limit (synchronized state). In the resulting synchronization scheme, the processors make close-to-uniform progress with a nonzero rate without global intervention. We obtain our results by ``simulating the simulations", based on the exact algorithmic rules, supported by coarse-grained arguments.
Guclu Hasan
Korniss Gyorgy
Novotny Mark A.
Racz Zoltan
Toroczkai Zoltan
No associations
LandOfFree
Synchronization Landscapes in Small-World-Connected Computer Networks does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Synchronization Landscapes in Small-World-Connected Computer Networks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Synchronization Landscapes in Small-World-Connected Computer Networks will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-306500