Non-Hermitean Random Matrix Theory: Summation of Planar Diagrams, the "Single-Ring" Theorem and the Disk-Annulus Phase Transition

Physics – Condensed Matter – Disordered Systems and Neural Networks

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

latex, 36 pages, 12 figures This is an expanded version of an invited talk at the 4th International Workshop on Pseudo-Hermite

Scientific paper

10.1088/0305-4470/39/32/S07

I review aspects of work done in collaboration with A. Zee and R. Scalettar \cite{fz1,fz2,fsz} on complex non-hermitean random matrices. I open by explaining why the bag of tools used regularly in analyzing hermitean random matrices cannot be applied directly to analyze non-hermitean matrices, and then introduce the Method of Hermitization, which solves this problem. Then, for rotationally invariant ensembles, I derive a master equation for the average density of eigenvalues in the complex plane, in the limit of infinitely large matrices. This is achieved by resumming all the planar diagrams which appear in the perturbative expansion of the hermitized Green function. Remarkably, this resummation can be carried {\em explicitly} for any rotationally invariant ensemble. I prove that in the limit of infinitely large matrices, the shape of the eigenvalue distribution is either a disk or an annulus. This is the celebrated ``Single-Ring'' Theorem. Which of these shapes is realized is determined by the parameters (coupling constants) which determine the ensemble. By varying these parameters a phase transition may occur between the two possible shapes. I briefly discuss the universal features of this transition. As the analysis of this problem relies heavily on summation of planar Feynman diagrams, I take special effort at presenting a pedagogical exposition of the diagrammatic method, which some readers may find useful.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Non-Hermitean Random Matrix Theory: Summation of Planar Diagrams, the "Single-Ring" Theorem and the Disk-Annulus Phase Transition does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Non-Hermitean Random Matrix Theory: Summation of Planar Diagrams, the "Single-Ring" Theorem and the Disk-Annulus Phase Transition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Non-Hermitean Random Matrix Theory: Summation of Planar Diagrams, the "Single-Ring" Theorem and the Disk-Annulus Phase Transition will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-305551

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.