Physics – Condensed Matter
Scientific paper
1994-10-26
Phys. Rev. B, 51 (1995) 4777-4791
Physics
Condensed Matter
32 pages, Plain TeX, 3 figures appended as postscript files, EHLBN26/June/94
Scientific paper
10.1103/PhysRevB.51.4777
We investigate the conventional tight-binding model of $L$ $\pi$-electrons on a ring-shaped mol\-e\-cule of $L$ atoms with nearest neighbor hopping. The hopping amplitudes, $t(w)$, depend on the atomic spacings, $w$, with an associated distortion energy $V(w)$. A Hubbard type on-site interaction as well as nearest-neighbor repulsive potentials can also be included. We prove that when $L=4k+2$ the minimum energy $E$ occurs either for equal spacing or for alternating spacings (dimerization); nothing more chaotic can occur. In particular this statement is true for the Peierls-Hubbard Hamiltonian which is the case of linear $t(w)$ and quadratic $V(w)$, i.e., $t(w)=t_0-\alpha w$ and $V(w)=k(w-a)^2$, but our results hold for any choice of couplings or functions $t(w)$ and $V(w)$. When $L=4k$ we prove that more chaotic minima {\it can\/} occur, as we show in an explicit example, but the alternating state is always asymptotically exact in the limit $L\to\infty$. Our analysis suggests three interesting conjectures about how dimerization stabilizes for large systems. We also treat the spin-Peierls problem and prove that nothing more chaotic than dimerization occurs for $L=4k+2$ {\it and\/} $L=4k$.
Lieb Elliott
Nachtergaele Bruno
No associations
LandOfFree
The Stability of the Peierls Instability for Ring-Shaped Molecules does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Stability of the Peierls Instability for Ring-Shaped Molecules, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Stability of the Peierls Instability for Ring-Shaped Molecules will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-280674