Physics – Condensed Matter – Statistical Mechanics
Scientific paper
2000-06-23
Eur. Phys. J. E 5 (2001) 149
Physics
Condensed Matter
Statistical Mechanics
32 pages, 18 eps figures, LaTeX Final published version
Scientific paper
10.1007/s101890170071
We present an analysis of extensive large-scale Monte Carlo simulations of self-avoiding fixed-connectivity membranes for sizes (number of faces) ranging from 512 to 17672 (triangular) plaquettes. Self-avoidance is implemented via impenetrable plaquettes. We simulate the impenetrable plaquette model in both three and four bulk dimensions. In both cases we find the membrane to be flat for all temperatures: the size exponent in three dimensions is nu=0.95(5) (Hausdorff dimension d_H=2.1(1)). The single flat phase appears, furthermore, to be equivalent to the large bending rigidity phase of non-self-avoiding fixed-connectivity membranes - the roughness exponent in three dimensions is xi=0.63(4). This suggests that there is a unique universality class for flat fixed-connectivity membranes without attractive interactions. Finally we address some theoretical and experimental implications of our work.
Bowick Mark J.
Cacciuto Angelo
Thorleifsson Gudmar
Travesset Alex
No associations
LandOfFree
Universality Classes of Self-Avoiding Fixed-Connectivity Membranes does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Universality Classes of Self-Avoiding Fixed-Connectivity Membranes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Universality Classes of Self-Avoiding Fixed-Connectivity Membranes will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-280316