Network Behavior in Thin Film Growth Dynamics

Physics – Condensed Matter – Materials Science

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

11 pages, 9 figures, revtex4

Scientific paper

10.1103/PhysRevB.79.195418

We present a new network modeling approach for various thin film growth techniques that incorporates re-emitted particles due to the non-unity sticking coefficients. We model re-emission of a particle from one surface site to another one as a network link, and generate a network model corresponding to the thin film growth. Monte Carlo simulations are used to grow films and dynamically track the trajectories of re-emitted particles. We performed simulations for normal incidence, oblique angle, and chemical vapor deposition (CVD) techniques. Each deposition method leads to a different dynamic evolution of surface morphology due to different sticking coefficients involved and different strength of shadowing effect originating from the obliquely incident particles. Traditional dynamic scaling analysis on surface morphology cannot point to any universal behavior. On the other hand, our detailed network analysis reveals that there exist universal behaviors in degree distributions, weighted average degree versus degree, and distance distributions independent of the sticking coefficient used and sometimes even independent of the growth technique. We also observe that network traffic during high sticking coefficient CVD and oblique angle deposition occurs mainly among edges of the columnar structures formed, while it is more uniform and short-range among hills and valleys of small sticking coefficient CVD and normal angle depositions that produce smoother surfaces.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Network Behavior in Thin Film Growth Dynamics does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Network Behavior in Thin Film Growth Dynamics, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Network Behavior in Thin Film Growth Dynamics will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-243524

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.