Physics – Condensed Matter – Quantum Gases
Scientific paper
2009-12-07
Physics
Condensed Matter
Quantum Gases
Laser Physics (in press)
Scientific paper
The similarity between matter waves in periodic potential and solid-state physics processes has triggered the interest in quantum simulation using Bose-Fermi ultracold gases in optical lattices. The present work evidences the similarity between electrons moving under the application of oscillating electromagnetic fields and matter waves experiencing an optical lattice modulated by a frequency difference, equivalent to a spatially shaken periodic potential. We demonstrate that the tunneling properties of a Bose-Einstein condensate in shaken periodic potentials can be precisely controlled. We take additional crucial steps towards future applications of this method by proving that the strong shaking of the optical lattice preserves the coherence of the matter wavefunction and that the shaking parameters can be changed adiabatically, even in the presence of interactions. We induce reversibly the quantum phase transition to the Mott insulator in a driven periodic potential.
Arimondo Ennio
Ciampini Donatella
Lignier Hans
Morsch Oliver
Sias Carlo
No associations
LandOfFree
Tunneling control and localization for Bose-Einstein condensates in a frequency modulated optical lattice does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Tunneling control and localization for Bose-Einstein condensates in a frequency modulated optical lattice, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tunneling control and localization for Bose-Einstein condensates in a frequency modulated optical lattice will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-243320