Stationary Motion of the Adiabatic Piston

Physics – Condensed Matter – Statistical Mechanics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

LaTeX file, 9 pages

Scientific paper

We consider a one-dimensional system consisting of two infinite ideal fluids, with equal pressures but different temperatures T_1 and T_2, separated by an adiabatic movable piston whose mass M is much larger than the mass m of the fluid particules. This is the infinite version of the controversial adiabatic piston problem. The stationary non-equilibrium solution of the Boltzmann equation for the velocity distribution of the piston is expressed in powers of the small parameter \epsilon=\sqrt{m/M}, and explicitly given up to order \epsilon^2. In particular it implies that although the pressures are equal on both sides of the piston, the temperature difference induces a non-zero average velocity of the piston in the direction of the higher temperature region. It thus shows that the asymmetry of the fluctuations induces a macroscopic motion despite the absence of any macroscopic force. This same conclusion was previously obtained for the non-physical situation where M=m.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Stationary Motion of the Adiabatic Piston does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Stationary Motion of the Adiabatic Piston, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Stationary Motion of the Adiabatic Piston will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-16965

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.