Spin Fluctuation Theory for Quantum Tricritical Point Arising in Proximity to First-Order Phase Transitions: Applications to Heavy-Fermion Systems, YbRh2Si2, CeRu2Si2, and beta-YbAlB4

Physics – Condensed Matter – Strongly Correlated Electrons

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

17 pages, 10 fugures, to appear in Journal of the Physical Society of Japan Vol.78 No.7

Scientific paper

10.1143/JPSJ.78.084707

We propose a phenomenological spin fluctuation theory for antiferromagnetic quantum tricritical point (QTCP), where the first-order phase transition changes into the continuous one at zero temperature. Under magnetic fields, ferromagnetic quantum critical fluctuations develop around the antiferromagnetic QTCP in addition to antiferromagnetic ones, which is in sharp contrast with the conventional antiferromagnetic quantum critical point. For itinerant electron systems,} we show that the temperature dependence of critical magnetic fluctuations around the QTCP are given as chiQ \propto T^{-3/2} (chi0\propto T^{-3/4}) at the antiferromagnetic ordering (ferromagnetic) wave number q=Q (q=0). The convex temperature dependence of chi0^{-1} is the characteristic feature of the QTCP, which is never seen in the conventional spin fluctuation theory. We propose that the general theory of quantum tricriticality that has nothing to do with the specific Kondo physics itself, solves puzzles of quantum criticalities widely observed in heavy-fermion systems such as YbRh2Si2, CeRu2Si2, and beta-YbAlB4. For YbRh2Si2, our theory successfully reproduces quantitative behaviors of the experimental ferromagnetic susceptibility and the magnetization curve by choosing the phenomenological parameters properly. The quantum tricriticality is also consistent with singularities of other physical properties such as specific heat, nuclear magnetic relaxation time 1/T_1T, and Hall coefficient. For CeRu2Si2 and beta-YbAlB4, we point out that the quantum tricriticality is a possible origin of the anomalous diverging enhancement of the uniform susceptibility observed in these materials.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Spin Fluctuation Theory for Quantum Tricritical Point Arising in Proximity to First-Order Phase Transitions: Applications to Heavy-Fermion Systems, YbRh2Si2, CeRu2Si2, and beta-YbAlB4 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Spin Fluctuation Theory for Quantum Tricritical Point Arising in Proximity to First-Order Phase Transitions: Applications to Heavy-Fermion Systems, YbRh2Si2, CeRu2Si2, and beta-YbAlB4, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spin Fluctuation Theory for Quantum Tricritical Point Arising in Proximity to First-Order Phase Transitions: Applications to Heavy-Fermion Systems, YbRh2Si2, CeRu2Si2, and beta-YbAlB4 will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-128781

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.