Evaporation and fluid dynamics of a sessile drop of capillary size

Physics – Fluid Dynamics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

23 pages, 12 figures

Scientific paper

10.1103/PhysRevE.79.046301

Theoretical description and numerical simulation of an evaporating sessile drop are developed. We jointly take into account the hydrodynamics of an evaporating sessile drop, effects of the thermal conduction in the drop and the diffusion of vapor in air. A shape of the rotationally symmetric drop is determined within the quasistationary approximation. Nonstationary effects in the diffusion of the vapor are also taken into account. Simulation results agree well with the data of evaporation rate measurements for the toluene drop. Marangoni forces associated with the temperature dependence of the surface tension, generate fluid convection in the sessile drop. Our results demonstrate several dynamical stages of the convection characterized by different number of vortices in the drop. During the early stage the street of vortices arises near a surface of the drop and induces a non-monotonic spatial distribution of the temperature over the drop surface. The initial number of near-surface vortices in the drop is controlled by the Marangoni cell size which is similar to that given by Pearson for flat fluid layers. This number quickly decreases with time, resulting in three bulk vortices in the intermediate stage. The vortices finally transform into the single convection vortex in the drop, existing during about 1/2 of the evaporation time.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Evaporation and fluid dynamics of a sessile drop of capillary size does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Evaporation and fluid dynamics of a sessile drop of capillary size, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Evaporation and fluid dynamics of a sessile drop of capillary size will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-117168

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.