Physics – Condensed Matter – Superconductivity
Scientific paper
2005-11-08
Phys. Rev. B 73, 134504 (2006)
Physics
Condensed Matter
Superconductivity
29 pages (single column format), 7 figures
Scientific paper
10.1103/PhysRevB.73.134504
A system comprising two superconducting thin films connected by a point contact is considered. The contact resistance is calculated as a function of temperature and film geometry, and is found to vanish rapidly with temperature, according to a universal, nearly activated form, becoming strictly zero only at zero temperature. At the lowest temperatures, the activation barrier is set primarily by the superfluid stiffness in the films, and displays only a weak (i.e., logarithmic) temperature dependence. The Josephson effect is thus destroyed, albeit only weakly, as a consequence of the power-law-correlated superconducting fluctuations present in the films below the Berezinskii-Kosterlitz-Thouless transition temperature. The behavior of the resistance is discussed, both in various limiting regimes and as it crosses over between these regimes. Details are presented of a minimal model of the films and the contact, and of the calculation of the resistance. A formulation in terms of quantum phase-slip events is employed, which is natural and effective in the limit of a good contact. However, it is also shown to be effective even when the contact is poor and is, indeed, indispensable, as the system always behaves as if it were in the good-contact limit at low enough temperature. A simple mechanical analogy is introduced to provide some heuristic understanding of the nearly-activated temperature dependence of the resistance. Prospects for experimental tests of the predicted behavior are discussed, and numerical estimates relevant to anticipated experimental settings are provided.
Fisher Matthew P. A.
Goldbart Paul M.
Hermele Michael
Refael Gil
No associations
LandOfFree
Universal point contact resistance between thin-film superconductors does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Universal point contact resistance between thin-film superconductors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Universal point contact resistance between thin-film superconductors will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-104619