New `Moons' of Saturn May Be Transient Objects

Physics – Optics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

ADONIS Observes Pandora, S/1995 S6 and Others How many moons has Saturn, the second-largest planet in the solar system ?
Until recently, the best answer was eighteen, ranging from innermost Pan that circles the planet 75,000 km above the cloud tops in a little less than 14 hours, to distant Phoebe , 13 million km away in a reverse (`retrograde') 550-day orbit [1]. Now the situation is less clear.
New observations have become available which raise some questions about the actual number and nature of small `moons' near this planet. In particular, there is now evidence that some of the recent sightings may in fact refer to temporary condensations of material (dust clouds) in the inner rings rather than solid bodies.
Most of these observations have been made with the Hubble Space Telescope (HST), but important supplementary data [2] was also obtained with the high-resolution ADONIS camera at the ESO 3.6-m telescope. When the Sun and Earth Cross the Plane of the Rings Saturn is surrounded by a spectacular ring system in which a large number of small (probably cm- to m-size) icy bodies are moving. Soon after the invention of the telescope in the early 17th century, it was found to consist of an inner B- and an outer A-ring, separated by the dark `Cassini division'. The faint F-ring was discovered further out by the Pioneer 11 spacecraft in 1979; it is separated from the A-ring by the 3000-km wide `Pioneer division'.
All of these rings are very flat and quite thin. They are apparently no more than 2 kilometres thick in a global sense, and probably much less locally (10 - 100 metres). They all lie in the same plane which is inclined by 26.7 degrees, relative to the planet's orbital plane. One revolution of Saturn around the Sun lasts 29.455 years and twice during each orbital period, i.e. once about every 15 years, the Sun is situated exactly in this ring plane. This happened most recently on November 19, 1995. Astronomers refer to these relatively rare events as solar ring plane crossings (RPX) . At the corresponding times, the Sun illuminates the thin Saturnian rings exactly from the side.
Due to its own orbital motion around the Sun, the Earth will cross the ring plane either once or three times, just before and/or after a solar RPX event. In 1995, this happened on May 22 and August 10, and there will be a third Earth RPX event on February 11, 1996. RPX Events Offer Improved Possibilities to Discover Faint Moons The apparent brightness of Saturn's rings decreases dramatically around the time of a solar RPX event. It is then much easier to detect faint moons which would otherwise be lost in the strong glare of Saturn's ring system. Also, the edge-on view improves the chances of detecting faint and dilute rings [3]. Moreover, numerous `mutual events' (eclipses and occultations) occur between the moons during this period; exact timing of these events allows highly improved determination of the motions and orbits around Saturn of these objects.
The most recent Earth RPX event took place on August 10, 1995. At this time, Saturn was situated nearly opposite the Sun (in `opposition'), as seen from the Earth, and conditions were very favourable for astronomical observations from both hemispheres. However, because of the longer nights during the southern winter, observing possibilities were particularly good in the south and thus at the ESO La Silla Observatory. The ADONIS Observations Here, a team of astronomers (Jean-Luc Beuzit, Bruno Sicardy and Francois Poulet of the Paris Observatory; Pablo Prado from ESO) followed this rare event during 6 half-nights around August 10, 1995, with the advanced ADONIS adaptive optics camera at the ESO 3.6-m telescope. This instrument neutralizes the image-smearing effects of the atmospheric turbulence and records very sharp images on an infrared-sensitive 256 x 256 pixel detector with a scale of 0.05 arcsec/pixel.
Most of the Saturn images were taken through the `short K' filter with a central wavelength at 2.2 micron. This near-infrared wavelength region is characterised by strong absorption lines of molecular hydrogen (H2) and methane (CH4), two elements that are highly abundant in the planet's atmosphere. The planet therefore appears very dark at this wavelength, and its light interferes significantly less with the observations of the fainter rings and moons. In spite of a somewhat mediocre seeing, the ADONIS instrument enabled the observers to obtain images with an angular resolution as good as 0.3 arcsec, corresponding to about 1900 km at the distance to Saturn during the observations (1313 million km).
There were several scientific goals of these observations. First, they served to measure the brightness of the rings when seen from the side at Earth RPX in order to estimate their thickness, to determine their orientation and to detect a possible warp (deviation from flatness) of their plane. Secondly, they allowed to image for the first time again some of the small moons discovered in 1980/81 from the ground and by the Voyager 1 and 2 spacecraft and, if possible, to discover new ones. Thirdly, they offered the possibility to detect faint rings outside the main ring system. Numerous frames were obtained and many have still not been completely evaluated. Imaging of the Smallest Moons The accompanying, composite false-colour photo (ESO Press Photo 03/96) shows the rings, seen almost edge-on a few hours before the Earth RPX event at 20:54 UT on August 10, 1995. At this time, the Earth was slightly below the ring plane and the Sun was slightly above it, so that the dark side of the rings was visible. The observed brightness is then mainly due to the edge-on solar illumination of the ring system, i.e. to its thickness. To a lesser extent, it is also due to some solar light transmitted through the semi-transparent rings.
Among the various moons seen in the ADONIS frames are Rhea, Thetys, Dione, Mimas, Janus, Epimetheus and Pandora. Janus, first discovered visually in 1966 by French astronomer Audouin Dollfus during an earlier RPX period, shares the same orbit as Epimetheus, 90,000 kilometers above the clouds. Epimetheus measures about 120 kilometres across, Janus 200 kilometres. Pandora, which was first seen on images obtained with the Voyager 1 spacecraft in 1980, is only half the size of Janus. The ADONIS images constitute one of the first sightings of this small and faint object with a ground-based telescope. What is the Nature of S/1995 S6 ? Of particular interest are the comparatively bright images in several ADONIS frames of an unresolved object. It has now been identified with the new `moon' S/1995 S6 that was detected on frames obtained with the Hubble Space Telescope (HST), some hours after the ADONIS images were taken [4]. It turns out that a total of nine pre-discovery images of S/1995 S6 were obtained at ESO, both East and West of Saturn, as this object moves around the planet. Based on all available observations, the orbital period has now been determined as about 14 hours 50 minutes. It is located at the same distance as the F-ring.
While there is little doubt that the object seen by HST and ADONIS is the same, there is a strange discrepancy in the measured brightness. From a comparison with the measurements of Thetys, the K magnitude of S/1995 S6 is found to be 14.9; this indicates a reflectivity that is about four times higher than that observed by the HST in the near-infrared part of the spectrum. This unexpected effect cannot yet be explained.
Moreover, it cannot be excluded that S/1995 S6 is not a real, solid moon, but just a transient clumping of material in the F-ring. This is because its observed motion corresponds exactly to that of the F-ring and especially since, considering its brightness, it ought to have been observed already by the Voyager spacecraft in 1980/81 if it were a permanent body. In that sense, S/1995 S6 is probably a `transient moon'. The F-ring is very close to a zone of dynamical instability (the so-called `Roche limit') near the planet, where condensations of the small bodies in the ring may form and again be dis

No affiliations

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

New `Moons' of Saturn May Be Transient Objects does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with New `Moons' of Saturn May Be Transient Objects, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and New `Moons' of Saturn May Be Transient Objects will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-970548

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.