Ejection and Lofting of Dust from Hypervelocity Impacts on the Moon

Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

[5420] Planetary Sciences: Solid Surface Planets / Impact Phenomena, Cratering, [6015] Planetary Sciences: Comets And Small Bodies / Dust, [6250] Planetary Sciences: Solar System Objects / Moon

Scientific paper

Hypervelocity impact events mobilize and redistribute fine-grained regolith dust across the surfaces of planetary bodies. The ejecta mass-velocity distribution controls the location and emplacement of these materials. The current flux of material falling on the moon is dominated by small bolides and should cause frequent impacts that eject dust at high speeds. For example, approximately 25 LCROSS-sized (~20-30m diameter) craters are statistically expected to be formed naturally on the moon during any given earth year. When scaled to lunar conditions, the high-speed component of ejecta from hypervelocity impacts can be lofted for significant periods of time (as evidenced by the LCROSS mission results, c.f., Schultz, et al., 2010, Colaprete, et al., 2010). Even at laboratory scales, ejecta can approach orbital velocities; the higher impact speeds and larger projectiles bombarding the lunar surface may permit a significant portion of material to be launched closer to escape velocity. When these ejecta return to the surface (or encounter local topography), they impact at hundreds of meters per second or faster, thereby "scouring" the surface with low mass oblique impacts. While these high-speed ejecta represent only a small fraction of the total ejected mass, the lofting and subsequent ballistic return of this dust has the highest mobilization potential and will be directly applicable to the upcoming LADEE mission. A suite of hypervelocity impact experiments into granular materials was performed at the NASA Ames Vertical Gun Range (AVGR). This study incorporates both canonical sand targets and air-fall pumice dust to simulate the mechanical properties of lunar regolith. The implementation of a Particle Tracking Velocimetry (PTV) technique permits non-intrusive measurement of the ejecta velocity distribution within the ejecta curtain by following the path of individual ejecta particles. The PTV system developed at the AVGR uses a series of high-speed cameras (ranging from 11,000 to 500,000 frames per second) to allow measurement of particle velocity over the large dynamic range required for early-time, high-speed components of ejecta. Preliminary results for impacts into sand (Hermalyn and Schultz, 2010, 2011) reveal that early in the cratering process, ejection velocities are higher than assumed by dimensional scaling laws (Housen, et al., 1983). Moreover, the ejection angles of this early-time component are initially low (~30°) and gradually increase to reach nominal ejection angles (~45° for impacts into sand). In this study, we assess the expected ejecta velocities on the moon from the current impact flux and the possible effects of the secondary impacts of ejecta dust particles. By convolving these ejecta measurements with the lunar impact flux rate, an estimate can be derived for the amount and ballistic flight time of dust lofted above the surface of the moon over a given year.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Ejection and Lofting of Dust from Hypervelocity Impacts on the Moon does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Ejection and Lofting of Dust from Hypervelocity Impacts on the Moon, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ejection and Lofting of Dust from Hypervelocity Impacts on the Moon will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-871996

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.