Physics
Scientific paper
Apr 2003
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2003jgra..108.8001z&link_type=abstract
Journal of Geophysical Research (Space Physics), Volume 108, Issue A4, pp. COA 2-1, CiteID 8001, DOI 10.1029/2002JA009355
Physics
4
Magnetospheric Physics: Auroral Phenomena (2407), Magnetospheric Physics: Solar Wind/Magnetosphere Interactions, Magnetospheric Physics: Energetic Particles, Precipitating, Ionosphere: Wave/Particle Interactions
Scientific paper
Dayside detached auroras (DDA) refer to auroras observed separate from the equatorward edge of the main oval on the dayside. They are studied here using IMAGE FUV and DMSP particle data. Occurrence of these DDA appears to be correlated with sudden solar wind dynamic pressure enhancements and northward interplanetary magnetic field, as monitored by the Wind satellite. They are usually very dynamic and short-lived with a lifetime of the order of 10 minutes. Out of the three FUV instrument channels on IMAGE, DDA are best detected by the IMAGE FUV SI-12 instrument, which measures intensities of the Doppler red-shifted Hydrogen Lyman Alpha line. This indicates that energetic proton precipitation is the major component. Simultaneous DMSP particle observations confirm that energetic protons (>10 keV) in the dayside inner magnetosphere are the primary source of those DDA detected by the SI-12 instrument. DMSP also detected significant electron fluxes associated with the DDA, but the electron precipitations have little or no contribution to the DDA intensities detected by the SI-12 instrument. Precipitations of energetic protons (electrons) which caused DDA could be explained by enhanced cyclotron instability which arose from adiabatic compression following sudden solar wind dynamic pressure enhancements.
Frey Harald U.
Immel Thomas J.
Mende Stephen B.
Paxton Larry J.
Zhang Yajing
No associations
LandOfFree
Sudden solar wind dynamic pressure enhancements and dayside detached auroras: IMAGE and DMSP observations does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Sudden solar wind dynamic pressure enhancements and dayside detached auroras: IMAGE and DMSP observations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sudden solar wind dynamic pressure enhancements and dayside detached auroras: IMAGE and DMSP observations will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-849127