Physics
Scientific paper
Apr 2003
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2003eaeja.....8067w&link_type=abstract
EGS - AGU - EUG Joint Assembly, Abstracts from the meeting held in Nice, France, 6 - 11 April 2003, abstract #8067
Physics
Scientific paper
If the interpretation of certain Mars Global Surveyor images indicating recent ground water seepage and surface runoff (1) is correct, it may imply that Mars can still be active internally in some places from time to time, and outgassing of certain molecules from the interior could occur with or without the water seepage. Although there is no evidence of active volcanism on Mars today, ``localized'' outgassing sources, the ``hot spots'', may not be ruled out. If outgassing does occur somewhere on Mars, water, carbon dioxide, sulfur species, methane, and to a lesser extent, halogens, would be the likely molecules of outgassing, based on the terrestrial analogs. The sulfur species, methane and halogens have not been detected in the ``global'' observations of Mars. Considering the possibility of outgassing from some localized hot spots, we have developed a one-dimensional photochemical model (2) that includes methane (CH_4), sulfur dioxide (SO_2) and hydrogen sulfide (H_2S), starting with their current ``global average'' upper limits of, respectively, 0.02, 0.1 and 0.1 ppm at the surface, and then progressively increasing their abundances above possible hot spots. Halogens are neglected as they are a minor product of the terrestrial outgassing sources. We find that the introduction of methane into the martian atmosphere results in the formation of mainly formaldehyde, methyl alcohol (CH_3OH) and ethane (C_2H_6), whereas the introduction of the sulfur species produces mainly sulfur monoxide (SO) and sulfuric acid (H_2SO_4). In a relatively short time of an hour, ordinary convective processes alone can reduce the mixing ratios of outgassed species by factors of 10^4 -- 10^5 approximately 50 km from the source, and the time for spreading the source material more or less uniformly over the planet (with corresponding dilution factor of ˜10^8) would be approximately one year. Depending upon the flux of the outgassed molecules from possible hot spots, some of these species, especially CH_4, SO_2, H_2S, and perhaps CH_2O, may be detectable locally, either by remote sensing or in situ measurements. References: (1) Malin, M. C. and K. S. Edgett, Science 288, 2330, 2000; (2) Wong, A. S., S. K. Atreya, and Th. Encrenaz, J. Geophys. Res., in press, 2003.
Atreya Sushil K.
Renno Nilton O.
Wong Ah San
No associations
LandOfFree
Chemical identifications of possible martian hot spots does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Chemical identifications of possible martian hot spots, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chemical identifications of possible martian hot spots will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-844187