Physics – Mathematical Physics
Scientific paper
2011-08-30
Physics
Mathematical Physics
14 pages, 3 figures
Scientific paper
Several new relationships between hypergeometric functions are found by comparing results for Feynman integrals calculated using different methods. A new expression for the one-loop propagator-type integral with arbitrary masses and arbitrary powers of propagators is derived in terms of only one Appell hypergeometric function F_1. From the comparison of this expression with a previously known one, a new relation between the Appell functions F_1 and F_4 is found. By comparing this new expression for the case of equal masses with another known result, a new formula for reducing the F_1 function with particular arguments to the hypergeometric function _3F_2 is derived. By comparing results for a particular one-loop vertex integral obtained using different methods, a new relationship between F_1 functions corresponding to a quadratic transformation of the arguments is established. Another reduction formula for the F_1 function is found by analysing the imaginary part of the two-loop self-energy integral on the cut. An explicit formula relating the F_1 function and the Gaussian hypergeometric function _2F_1 whose argument is the ratio of polynomials of degree six is presented.
Kniehl Bernd A.
Tarasov Oleg V.
No associations
LandOfFree
Finding new relationships between hypergeometric functions by evaluating Feynman integrals does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Finding new relationships between hypergeometric functions by evaluating Feynman integrals, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Finding new relationships between hypergeometric functions by evaluating Feynman integrals will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-729111