Physics – High Energy Physics – High Energy Physics - Phenomenology
Scientific paper
1999-06-03
Phys.Rev.D61:016007,2000
Physics
High Energy Physics
High Energy Physics - Phenomenology
29 pages, LaTeX
Scientific paper
10.1103/PhysRevD.61.016007
The elementary particles of the Standard Model may live in more than 3+1 dimensions. We study the consequences of large compactified dimensions on scattering and decay observables at high-energy colliders. Our analysis includes global fits to electroweak precision data, indirect tests at high-energy electron-positron colliders (LEP2 and NLC), and direct probes of the Kaluza-Klein resonances at hadron colliders (Tevatron and LHC). The present limits depend sensitively on the Higgs sector, both the mass of the Higgs boson and how many dimensions it feels. If the Higgs boson is trapped on a 3+1 dimensional wall with the fermions, large Higgs masses (up to 500 GeV) and relatively light Kaluza-Klein mass scales (less than 4 TeV) can provide a good fit to precision data. That is, a light Higgs boson is not necessary to fit the electroweak precision data, as it is in the Standard Model. If the Higgs boson propagates in higher dimensions, precision data prefer a light Higgs boson (less than 260 GeV), and a higher compactification scale (greater than 3.8 TeV). Future colliders can probe much larger scales. For example, a 1.5 TeV electron-positron linear collider can indirectly discover Kaluza-Klein excitations up to 31 TeV if 500 fb^-1 integrated luminosity is obtained.
Rizzo Thomas G.
Wells James Daniel
No associations
LandOfFree
Electroweak precision measurements and collider probes of the Standard Model with large extra dimensions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Electroweak precision measurements and collider probes of the Standard Model with large extra dimensions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electroweak precision measurements and collider probes of the Standard Model with large extra dimensions will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-710779