Physics – Mathematical Physics
Scientific paper
2007-02-23
J. Phys. A: Math. Theor. 40 5427-5441 (2007)
Physics
Mathematical Physics
16 pages, 24 EPS figures, uses IOP style LaTeX, some misprints are correctd and journal-reference is added
Scientific paper
10.1088/1751-8113/40/20/012
The phase space representation for a q-deformed model of the quantum harmonic oscillator is constructed. We have found explicit expressions for both the Wigner and Husimi distribution functions for the stationary states of the $q$-oscillator model under consideration. The Wigner function is expressed as a basic hypergeometric series, related to the Al-Salam-Chihara polynomials. It is shown that, in the limit case $h \to 0$ ($q \to 1$), both the Wigner and Husimi distribution functions reduce correctly to their well-known non-relativistic analogues. Surprisingly, examination of both distribution functions in the q-deformed model shows that, when $q \ll 1$, their behaviour in the phase space is similar to the ground state of the ordinary quantum oscillator, but with a displacement towards negative values of the momentum. We have also computed the mean values of the position and momentum using the Wigner function. Unlike the ordinary case, the mean value of the momentum is not zero and it depends on $q$ and $n$. The ground-state like behaviour of the distribution functions for excited states in the q-deformed model opens quite new perspectives for further experimental measurements of quantum systems in the phase space.
der Jeugt Joris Van
Jafarov Elchin I.
Lievens S.
Nagiyev Sh. M.
No associations
LandOfFree
The Wigner function of a q-deformed harmonic oscillator model does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Wigner function of a q-deformed harmonic oscillator model, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Wigner function of a q-deformed harmonic oscillator model will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-692091