Physics – Quantum Physics
Scientific paper
2008-04-15
Physical Review A 78, 022106, (2008)
Physics
Quantum Physics
18 pages, 7 figures, reviewers suggestions included and tightened presentation; accepted for publication in PRA
Scientific paper
10.1103/PhysRevA.78.022106
We compare different quantum Master equations for the time evolution of the reduced density matrix. The widely applied secular approximation (rotating wave approximation) applied in combination with the Born-Markov approximation generates a Lindblad type master equation ensuring for completely positive and stable evolution and is typically well applicable for optical baths. For phonon baths however, the secular approximation is expected to be invalid. The usual Markovian master equation does not generally preserve positivity of the density matrix. As a solution we propose a coarse-graining approach with a dynamically adapted coarse graining time scale. For some simple examples we demonstrate that this preserves the accuracy of the integro-differential Born equation. For large times we analytically show that the secular approximation master equation is recovered. The method can in principle be extended to systems with a dynamically changing system Hamiltonian, which is of special interest for adiabatic quantum computation. We give some numerical examples for the spin-boson model of cases where a spin system thermalizes rapidly, and other examples where thermalization is not reached.
Brandes Tobias
Schaller Gernot
No associations
LandOfFree
Preservation of Positivity by Dynamical Coarse-Graining does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Preservation of Positivity by Dynamical Coarse-Graining, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Preservation of Positivity by Dynamical Coarse-Graining will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-653463