Physics – Quantum Physics
Scientific paper
2006-11-08
Physics
Quantum Physics
8 pages, changes in title and presentation
Scientific paper
10.1103/PhysRevA.75.052309
We study the measurement for the unambiguous discrimination of two mixed quantum states that are described by density operators $\rho_1$ and $\rho_2$ of rank d, the supports of which jointly span a 2d-dimensional Hilbert space. Based on two conditions for the optimum measurement operators, and on a canonical representation for the density operators of the states, two equations are derived that allow the explicit construction of the optimum measurement, provided that the expression for the fidelity of the states has a specific simple form. For this case the problem is mathematically equivalent to distinguishing pairs of pure states, even when the density operators are not diagonal in the canonical representation. The equations are applied to the optimum unambiguous discrimination of two mixed states that are similar states, given by $\rho_2= U\rho_1 U^{\dag}$, and that belong to the class where the unitary operator U can be decomposed into multiple rotations in the d mutually orthogonal two-dimensional subspaces determined by the canonical representation.
No associations
LandOfFree
Optimum unambiguous discrimination of two mixed states and application to a class of similar states does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Optimum unambiguous discrimination of two mixed states and application to a class of similar states, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optimum unambiguous discrimination of two mixed states and application to a class of similar states will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-625958