Tailoring of the luminescent ions local environment in optical fibers, and applications

Physics – Optics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

arXiv admin note: substantial text overlap with arXiv:0911.1683

Scientific paper

The chapter is situated in the fields of fiber materials sciences and technologies (particularly dealing with the fiber glass compositions and luminescent ion doping, and transparent glass ceramic optical fibers), and applications such as fiber lasers and amplifiers. We propose to present a review of research activities on rare-earth (RE) and transition metals (TM) doped silica-based optical fibers, aiming at understanding theier spectral properties, and particularly some of their optical transitions that will allow interesting and alternative applications. Silica, as opposed to alternative, low temperature materials, is chosen for practical and economical reasons. Selected RE and TM ions are studied both as probes of their local environment and for their application potentials. In this chapter, we will focus on erbium (Er) ions for the potential spectral 'tailoring' of its gain curve at 1.55 $\mu$m, thulium (Tm) as local environment probe along both near infrared transitions around 0.8 and 1.47 $\mu$m, and chromium (Cr) for the sensitivity of valency and spectroscopy to the glass composition and its potential as saturable absorber in lasers. We will present some extensive studies on the influence of the local environment on dopants: such as (but not limited to) energy transfer mechanisms between rare-earth ions of same nature (Tm-Tm) or different nature (Yb-Tm), effect of the local phonon energy on Tm ions emission efficiency, broadening of Er ions emission induced by oxide nanoparticles grown in situ during the fabrication process, etc. Knowledge of these effects is essential for photonics applications, and many studies are under progress or are still needed in this field. The potential of some applications which could benefit from the basic studies on materials are also numerically studied : 0.8-$\mu$m thulium-doped fiber laser, so-called S-band (1.47 $\mu$m) thulium-doped amplifier for telecommunications and laser applications, sensitisation of Tm-based devices using ytterbium sensitized ions.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Tailoring of the luminescent ions local environment in optical fibers, and applications does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Tailoring of the luminescent ions local environment in optical fibers, and applications, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tailoring of the luminescent ions local environment in optical fibers, and applications will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-609558

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.