Speed of disentanglement in multi-qubit systems under depolarizing channel

Physics – Quantum Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

13 pages, 5 figures. The paper has been rewritten

Scientific paper

We investigate the speed of disentanglement in the multiqubit systems under the local depolarizing channel, in which each qubit is independently coupled to the environment. We focus on the bipartition entanglement between one qubit and the remaining qubits constituting the system, which is measured by the negativity. For the two-qubit system, the speed for the pure state completely depends on its entanglement. The upper and lower bounds of the speed for arbitrary two-qubit states, and the necessary conditions for a state achieving them, are obtained. For the three-qubit system, we study the speed for pure states, whose entanglement properties can be completely described by five local-unitary-transformation invariants. An analytical expression of the relation between the speed and the invariants are derived. The speed is enhanced by the the three-tangle which is the entanglement among the three qubits, but reduced by the the two-qubit correlations outside of the concurrence. The decay of the negativity can be restrained by the other two negativity with the coequal sense. The unbalance between two qubits can reduce speed of disentanglement of the remaining qubit in the system, even can retrieve the entanglement partially. For the $k$-qubit systems in an arbitrary superposition of GHZ state and W state, the speed depends almost entirely on the amount of the negativity when $k$ increases to five or six. An alternative quantitative definition for the robustness of entanglement is presented based on the speed of disentanglement, with comparison to the widely studied robustness measured by the critical amount of noise parameter where the entanglement vanishes. In the limit of large number of particles, the alternative robustness of the the GHZ-type states is inversely proportional to $k$, and the one of the W states approaches $1/\sqrt{k}$.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Speed of disentanglement in multi-qubit systems under depolarizing channel does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Speed of disentanglement in multi-qubit systems under depolarizing channel, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Speed of disentanglement in multi-qubit systems under depolarizing channel will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-474909

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.