Physics – High Energy Physics – High Energy Physics - Theory
Scientific paper
1994-12-16
Commun.Math.Phys. 176 (1996) 701-712
Physics
High Energy Physics
High Energy Physics - Theory
16 pages, Latex
Scientific paper
Although the WKB approximation for multicomponent systems has been intensively studied in the literature, its geometric and global aspects are much less well understood than in the scalar case. In this paper we give a completely geometric derivation of the transport equation, without using local sections and without assuming complete diagonalizability of the matrix valued principal symbol, or triviality of its eigenbundles. The term (called ``no-name term'' in some previous literature) appearing in the transport equation in addition to the covariant derivative with respect to a natural projected connection will be a tensor, independent of the choice of any sections. We give a geometric interpretation of this tensor, involving the contraction of the curvature of the eigenbundle and an analog of the second fundamental form with the Poisson tensor in phase space. In the non-degenerate case this term may be rewritten in an even simpler geometric form. Finally, we discuss obstructions to the existence of WKB states and give a geometric description of the quantization condition for WKB states for a non-degenerate eigenvalue-function.
Emmrich Claudio
Weinstein Alan
No associations
LandOfFree
Geometry of the transport equation in multicomponent WKB approximations does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Geometry of the transport equation in multicomponent WKB approximations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Geometry of the transport equation in multicomponent WKB approximations will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-46394