Physics – High Energy Physics – High Energy Physics - Theory
Scientific paper
1996-02-28
Physics
High Energy Physics
High Energy Physics - Theory
12 pages , Latex , No Figures , IPM preprint 96
Scientific paper
We show that the integrability of the dynamical system recently proposed by Calogero and characterized by the Hamiltonian $ H = \sum_{j,k}^{N} p_j p_k \{\lambda + \mu cos [ \nu ( q_j - q_k)] \} $ is due to a simple algebraic structure . It is shown that the integrals of motion are related to the Casimiar invariants of of the $su(1,1)$ algebra. Our method shows clearly how these types of systems can be generalized .
No associations
LandOfFree
Algebraic and Geometric Structure of the Integrable Models recently Proposed by Calogero does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Algebraic and Geometric Structure of the Integrable Models recently Proposed by Calogero, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Algebraic and Geometric Structure of the Integrable Models recently Proposed by Calogero will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-460622