Physics – Quantum Physics
Scientific paper
2006-04-05
Physics
Quantum Physics
changed contents
Scientific paper
We review our results on a mathematical dynamical theory for observables for open many-body quantum nonlinear bosonic systems for a very general class of Hamiltonians. We show that non-quadratic (nonlinear) terms in a Hamiltonian provide a singular "quantum" perturbation for observables in some "mesoscopic" region of parameters. In particular, quantum effects result in secular terms in the dynamical evolution, that grow in time. We argue that even for open quantum nonlinear systems in the deep quasi-classical region, these quantum effects can survive after decoherence and relaxation processes take place. We demonstrate that these quantum effects in open quantum systems can be observed, for example, in the frequency Fourier spectrum of the dynamical observables, or in the corresponding spectral density of noise. Estimates are presented for Bose-Einstein condensates, low temperature mechanical resonators, and nonlinear optical systems prepared in large amplitude coherent states. In particular, we show that for Bose-Einstein condensate systems the characteristic time of deviation of quantum dynamics for observables from the corresponding classical dynamics coincides with the characteristic time-scale of the well-known quantum nonlinear effect of phase diffusion.
Berman Gennady P.
Borgonovi Fausto
Dalvit Diego A. R.
No associations
LandOfFree
Quantum Dynamical Effects as a Singular Perturbation for Observables in Open Quasi-Classical Nonlinear Mesoscopic Systems does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Quantum Dynamical Effects as a Singular Perturbation for Observables in Open Quasi-Classical Nonlinear Mesoscopic Systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quantum Dynamical Effects as a Singular Perturbation for Observables in Open Quasi-Classical Nonlinear Mesoscopic Systems will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-419064