Quantum phase measurement and Gauss sum factorization of large integers in a superconducting circuit

Physics – Quantum Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

13 pages, 5 figures

Scientific paper

We study the implementation of quantum phase measurement in a superconducting circuit, where two Josephson phase qubits are coupled to the photon field inside a resonator. We show that the relative phase of the superposition of two Fock states can be imprinted in one of the qubits. The qubit can thus be used to probe and store the quantum coherence of two distinguishable Fock states of the single-mode photon field inside the resonator. The effects of dissipation of the photon field on the phase detection are investigated. We find that the visibilities can be greatly enhanced if the Kerr nonlinearity is exploited. We also show that the phase measurement method can be used to perform the Gauss sum factorization of numbers (${\geq} 10^4$) into a product of prime integers, as well as to precisely measure both the resonator's frequency and the nonlinear interaction strength. The largest factorizable number is mainly limited by the coherence time. If the relaxation time of the resonator were to be ${\sim} 10$ $\mu$s (${\sim} 1$ ms), then the largest factorizable number can be ${\geq} 10^4N$ (${\geq} 10^{7}N$), where $N$ is the number of photons in the resonator.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Quantum phase measurement and Gauss sum factorization of large integers in a superconducting circuit does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Quantum phase measurement and Gauss sum factorization of large integers in a superconducting circuit, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quantum phase measurement and Gauss sum factorization of large integers in a superconducting circuit will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-29152

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.