Hubble Space Telescope Observations of cD Galaxies and their Globular Cluster Systems

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

36 pages, 20 postscript figures, uses emulateapj. Accepted for publication in the Astronomical Journal

Scientific paper

10.1086/379965

We have used WFPC2 on the Hubble Space Telescope to obtain F450W and F814W images of four cD galaxies (NGC 541 in Abell 194, NGC 2832 in Abell 779, NGC 4839 in Abell 1656 and NGC 7768 in Abell 2666) in the range 5400 < cz < 8100 km s^{-1}. For NGC 541, the HST data are supplemented by ground-based B and I images obtained with the FORS1 on the VLT. We present surface brightness and color profiles for each of the four galaxies, confirming their classification as cD galaxies. Isophotal analyses reveal the presence of subarcsecond-scale dust disks in the nuclei of NGC 541 and NGC 7768. Despite the extreme nature of these galaxies in terms of spatial extent and luminosity, our analysis of their globular cluster systems reveals no anomalies in terms of specific frequencies, metallicity gradients, average metallicities, or the metallicity offset between the globulars and the host galaxy. We show that the latter offset appears roughly constant at \Delta [Fe/H] ~ 0.8 dex for early-type galaxies spanning a luminosity range of roughly four orders of magnitude. We combine the globular cluster metallicity distributions with an empirical technique described in a series of earlier papers to investigate the form of the protogalactic mass spectrum in these cD galaxies. We find that the observed GC metallicity distributions are consistent with those expected if cD galaxies form through the cannibalism of numerous galaxies and protogalactic fragments which formed their stars and globular clusters before capture and disruption. However, the properties of their GC systems suggest that dynamical friction is not the primary mechanism by which these galaxies are assembled. We argue that cDs instead form rapidly, via hierarchical merging, prior to cluster virialization.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Hubble Space Telescope Observations of cD Galaxies and their Globular Cluster Systems does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Hubble Space Telescope Observations of cD Galaxies and their Globular Cluster Systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hubble Space Telescope Observations of cD Galaxies and their Globular Cluster Systems will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-279360

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.