Physics – High Energy Physics – High Energy Physics - Theory
Scientific paper
1995-08-17
Physics
High Energy Physics
High Energy Physics - Theory
28 pages, Latex, 7 Postscript figures
Scientific paper
10.1007/BF02179577
We compute the one-dimensional configuration sums of the ABF model using the fermionic technique introduced in part I of this paper. Combined with the results of Andrews, Baxter and Forrester, we find proof of polynomial identities for finitizations of the Virasoro characters $\chi_{b,a}^{(r-1,r)}(q)$ as conjectured by Melzer. In the thermodynamic limit these identities reproduce Rogers--Ramanujan type identities for the unitary minimal Virasoro characters, conjectured by the Stony Brook group. We also present a list of additional Virasoro character identities which follow from our proof of Melzer's identities and application of Bailey's lemma.
No associations
LandOfFree
Fermionic solution of the Andrews-Baxter-Forrester model II: proof of Melzer's polynomial identities does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Fermionic solution of the Andrews-Baxter-Forrester model II: proof of Melzer's polynomial identities, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fermionic solution of the Andrews-Baxter-Forrester model II: proof of Melzer's polynomial identities will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-271606