Physics – High Energy Physics – High Energy Physics - Theory
Scientific paper
1997-04-24
Commun.Math.Phys. 194 (1998) 149-175
Physics
High Energy Physics
High Energy Physics - Theory
36 pages, latex. References have been added together with a note
Scientific paper
10.1007/s002200050353
We build nearly topological quantum field theories in various dimensions. We give special attention to the case of 8 dimensions for which we first consider theories depending only on Yang-Mills fields. Two classes of gauge functions exist which correspond to the choices of two different holonomy groups in SO(8), namely SU(4) and Spin(7). The choice of SU(4) gives a quantum field theory for a Calabi-Yau fourfold. The expectation values for the observables are formally holomorphic Donaldson invariants. The choice of Spin(7) defines another eight dimensional theory for a Joyce manifold which could be of relevance in M- and F-theories. Relations to the eight dimensional supersymmetric Yang-Mills theory are presented. Then, by dimensional reduction, we obtain other theories, in particular a four dimensional one whose gauge conditions are identical to the non-abelian Seiberg-Witten equations. The latter are thus related to pure Yang-Mills self-duality equations in 8 dimensions as well as to the N=1, D=10 super Yang-Mills theory. We also exhibit a theory that couples 3-form gauge fields to the second Chern class in eight dimensions, and interesting theories in other dimensions.
Baulieu Laurent
Kanno Hiroaki
Singer I. M.
No associations
LandOfFree
Special Quantum Field Theories In Eight And Other Dimensions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Special Quantum Field Theories In Eight And Other Dimensions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Special Quantum Field Theories In Eight And Other Dimensions will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-268521