Physics – Optics
Scientific paper
2003-08-29
Nature 394, 348-350 (1998), erratum: Nature 395, 621 (1998)
Physics
Optics
4 pages, 4 figures
Scientific paper
10.1038/28566
Light-induced rotation of absorbing microscopic particles by transfer of angular momentum from light to the material raises the possibility of optically driven micromachines. The phenomenon has been observed using elliptically polarized laser beams or beams with helical phase structure. But it is difficult to develop high power in such experiments because of overheating and unwanted axial forces, limiting the achievable rotation rates to a few hertz. This problem can in principle be overcome by using transparent particles, transferring angular momentum by a mechanism first observed by Beth in 1936, when he reported a tiny torque developed in a quartz waveplate due to the change in polarization of transmitted light. Here we show that an optical torque can be induced on microscopic birefringent particles of calcite held by optical tweezers. Depending on the polarization of the incident beam, the particles either become aligned with the plane of polarization (and thus can be rotated through specified angles) or spin with constant rotation frequency. Because these microscopic particles are transparent, they can be held in three-dimensional optical traps at very high power without heating. We have observed rotation rates in excess of 350 Hz.
Friese M. E. J.
Heckenberg Norman R.
Nieminen Timo A.
Rubinsztein-Dunlop Halina
No associations
LandOfFree
Optical alignment and spinning of laser-trapped microscopic particles does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Optical alignment and spinning of laser-trapped microscopic particles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical alignment and spinning of laser-trapped microscopic particles will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-258033