Describing gauge bosons at zero and finite temperature

Physics – High Energy Physics – High Energy Physics - Phenomenology

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

v2: 151 pages, 45 figures, revised, updated, and extended version submitted on invitation to Physics Reports

Scientific paper

Gauge theories of the Yang-Mills type are the single most important building block of the standard model and beyond. Since Yang-Mills theories are gauge theories their elementary particles, the gauge bosons, cannot be described without fixing a gauge. Beyond perturbation theory, gauge-fixing in non-Abelian gauge theories is obstructed by the Gribov-Singer ambiguity. The construction and implementation of a method-independent gauge-fixing prescription to resolve this ambiguity is the most important step to describe gauge bosons beyond perturbation theory. Proposals for such a procedure, generalizing the perturbative Landau gauge, are described here. Their implementation are discussed for two example methods, lattice gauge theory and the quantum equations of motion. The most direct access to the properties of the gauge bosons is provided by their correlation functions. The corresponding two- and three-point correlation functions are presented at all energy scales. These give access to the properties of the gauge bosons, like their absence from the asymptotic physical state space, the absence of an on-shell mass pole, particle-like properties at high energies, and their running couplings. Furthermore, auxiliary degrees of freedom are introduced during gauge-fixing, and their properties are discussed as well. These results are presented for two, three, and four dimensions, and for various gauge algebras. Finally, the modifications of the properties of gauge bosons at finite temperature are presented. Evidence is provided that these reflect the phase structure of Yang-Mills theory. However, it is found that the phase transition is not deconfining the gauge bosons, although the bulk thermodynamical behavior is of a Stefan-Boltzmann type. The resolution of this apparent contradiction is also presented. This resolution also provides an explicit and constructive solution to the Linde problem.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Describing gauge bosons at zero and finite temperature does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Describing gauge bosons at zero and finite temperature, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Describing gauge bosons at zero and finite temperature will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-256043

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.