Physics – High Energy Physics – High Energy Physics - Theory
Scientific paper
1999-09-15
Physics
High Energy Physics
High Energy Physics - Theory
42 pages
Scientific paper
Consider the evolution $$ \frac{\pl m_\iy}{\pl t_n}=\Lb^n m_\iy, \frac{\pl m_\iy}{\pl s_n}=-m_\iy(\Lb^\top)^n, $$ on bi- or semi-infinite matrices $m_\iy=m_\iy(t,s)$, with skew-symmetric initial data $m_{\iy}(0,0)$. Then, $m_\iy(t,-t)$ is skew-symmetric, and so the determinants of the successive "upper-left corners" vanish or are squares of Pfaffians. In this paper, we investigate the rich nature of these Pfaffians, as functions of t. This problem is motivated by questions concerning the spectrum of symmetric and symplectic random matrix ensembles.
Adler Mark
Moerbeke Pierre van
Shiota Takahiro
No associations
LandOfFree
Pfaff tau-functions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Pfaff tau-functions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pfaff tau-functions will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-197941