Quantum coherence in ion channels: Resonances, Transport and Verification

Physics – Quantum Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Under review for New Jorunal of Physics

Scientific paper

Recently it was demonstrated that long-lived quantum coherence exists during excitation energy transport in photosynthesis. It is a valid question up to which length, time and mass scales quantum coherence may extend, how to one may detect this coherence and what if any role it plays for the dynamics of the system. Here we suggest that the selectivity filter of ion channels may exhibit quantum coherence which might be relevant for the process of ion selectivity and conduction. We show that quantum resonances could provide an alternative approch to ultrafast 2D spectroscopy to probe these quantum coherences. We demonstrate that the emergence of resonances in the conduction of ion channels that are modulated periodicallly by time dependent external electric fields can serve as signitures of quantum coherence in such a system. Assessments of experimental feasibility and specific paths towards the experimental realization of such experiments are presented. We show that this may be probed by direct 2-D spectroscopy or through the emergence of resonances in the conduction of ion channels that are modulated periodically by time dependent external electric fields.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Quantum coherence in ion channels: Resonances, Transport and Verification does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Quantum coherence in ion channels: Resonances, Transport and Verification, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quantum coherence in ion channels: Resonances, Transport and Verification will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-185727

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.