Nearby stars of the Galactic disk and halo. III.

Mathematics – Logic

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

143

Stars: Fundamental Parameters, Galaxy: Formation, Galaxy: Stellar Content, Galaxy: Evolution

Scientific paper

High-resolution spectroscopic observations of about 150 nearby stars or star systems are presented and discussed. The study of these and another 100 objects of the previous papers of this series implies that the Galaxy became reality 13 or 14 Gyr ago with the implementation of a massive, rotationally-supported population of thick-disk stars. The very high star formation rate in that phase gave rise to a rapid metal enrichment and an expulsion of gas in supernovae-driven Galactic winds, but was followed by a star formation gap for no less than three billion years at the Sun's galactocentric distance. In a second phase, then, the thin disk - our ``familiar Milky Way'' - came on stage. Nowadays it traces the bright side of the Galaxy, but it is also embedded in a huge coffin of dead thick-disk stars that account for a large amount of baryonic dark matter. As opposed to this, cold-dark-matter-dominated cosmologies that suggest a more gradual hierarchical buildup through mergers of minor structures, though popular, are a poor description for the Milky Way Galaxy - and by inference many other spirals as well - if, as the sample implies, the fossil records of its long-lived stars do not stick to this paradigm. Apart from this general picture that emerges with reference to the entire sample stars, a good deal of the present work is however also concerned with detailed discussions of many individual objects. Among the most interesting we mention the blue straggler or merger candidates HD 165401 and HD 137763/HD 137778, the likely accretion of a giant planet or brown dwarf on 59 Vir in its recent history, and HD 63433 that proves to be a young solar analog at \tau˜200 Myr. Likewise, the secondary to HR 4867, formerly suspected non-single from the Hipparcos astrometry, is directly detectable in the high-resolution spectroscopic tracings, whereas the visual binary \chi Cet is instead at least triple, and presumably even quadruple. With respect to the nearby young stars a complete account of the Ursa Major Association is presented, and we provide as well plain evidence for another, the ``Hercules-Lyra Association'', the likely existence of which was only realized in recent years. On account of its rotation, chemistry, and age we do confirm that the Sun is very typical among its G-type neighbors; as to its kinematics, it appears however not unlikely that the Sun's known low peculiar space velocity could indeed be the cause for the weak paleontological record of mass extinctions and major impact events on our parent planet during the most recent Galactic plane passage of the solar system. Although the significance of this correlation certainly remains a matter of debate for years to come, we point in this context to the principal importance of the thick disk for a complete census with respect to the local surface and volume densities. Other important effects that can be ascribed to this dark stellar population comprise (i) the observed plateau in the shape of the luminosity function of the local FGK stars, (ii) a small though systematic effect on the basic solar motion, (iii) a reassessment of the term ``asymmetrical drift velocity'' for the remainder (i.e. the thin disk) of the stellar objects, (iv) its ability to account for the bulk of the recently discovered high-velocity blue white dwarfs, (v) its major contribution to the Sun's ˜220 km s-1 rotational velocity around the Galactic center, and (vi) the significant flattening that it imposes on the Milky Way's rotation curve. Finally we note a high multiplicity fraction in the small but volume-complete local sample of stars of this ancient population. This in turn is highly suggestive for a star formation scenario wherein the few existing single stellar objects might only arise from either late mergers or the dynamical ejection of former triple or higher level star systems.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Nearby stars of the Galactic disk and halo. III. does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Nearby stars of the Galactic disk and halo. III., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nearby stars of the Galactic disk and halo. III. will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1839403

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.