Waves from the collisions of comet Shoemaker-Levy 9 with Jupiter

Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

44

Scientific paper

OBSERVATIONS of the collisions of the fragments of comet Shoemaker-Levy 9 with Jupiter provided an unprecedented opportunity to probe the depths of the planet's atmosphere. Images taken by the Hubble Space Telescope revealed circular rings surrounding five of the impact sites1. The rings were observed for up to 2.5 hours after the impacts and spread at a constant velocity of 450 m s -1. There are three types of disturbance that might explain these observations: acoustic waves trapped at the tropopause temperature minimum2, gravity waves propagating vertically and horizontally in the stratosphere3, and gravity waves trapped in a stable layer which acts as a horizontal waveguide and is located within the hypothesized tropospheric water cloud4. Here we show that only the last of these phenomena can match the speed and relative amplitude of the observed waves, with the requirement that the impacts were deep and the stability of the trapping layer is large. The origin of the stable layer is still uncertain, but if it is produced by moist convection in the water cloud, then the ratio of oxygen to hydrogen on Jupiter must be surprisingly large- approximately ten times that on the Sun.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Waves from the collisions of comet Shoemaker-Levy 9 with Jupiter does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Waves from the collisions of comet Shoemaker-Levy 9 with Jupiter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Waves from the collisions of comet Shoemaker-Levy 9 with Jupiter will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1830941

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.