Physics
Scientific paper
Sep 2008
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008epsc.conf..653l&link_type=abstract
European Planetary Science Congress 2008, Proceedings of the conference held 21-25 September, 2008 in Münster, Germany. Online a
Physics
Scientific paper
Cassini observations made by the Imaging Science Subsystem (ISS) [1] and by the UltraViolet Imaging Spectrometer (UVIS) [2,3] have revealed the presence of a detached haze layer in Titan's mesosphere at an altitude of 520 km. Analysis of the observed optical properties presented in the accompanying talk [5], suggests that the average size of particles in the detached layer is of ~40 nm, with an imaginary index k < 0.3 at 187.5 nm and a number density of ˜30 particles cm-3, while calculations of the sedimentation velocity of the haze particles coupled with the derived number density imply a mass flux of 1.9-3.2 × 10-14 g cm-2 s-1. This is approximately equal to the mass flux required to explain the main haze layer and suggests that the main haze layer in Titan's stratosphere is formed primarily by sedimentation and coagulation of particles in the detached layer [5,6]. The HASI data clearly show that the haze is coincident with a temperature maximum. This rules out condensation as the source of the detached haze. We have also considered a more complicated scenario in which the detached layer is caused by an increase in the density of condensation nuclei near 520 km. This is motivated by the fact that silicate micrometeorites ablate near 500 km [7,8]. Recondensation of the refractory vapor creates `smoke' particles that could serve as condensation nuclei. Combination of Pioneer measurements along with theoretical estimations for the particles velocity distribution, suggest a mass flux of ~10-17 g cm-2 s-1 at Saturn's region [9], while measurements from the Cassini Dust Analyser (CDA) suggest a similar magnitude at Titan's location [10]. These fluxes are ~3 orders of magnitude smaller than the lower limit of the estimated mass flux out of the detached haze layer, so meteorite ablation can not be the direct cause of the aerosol layer. However, if the ablated meteoritic material reforms 1 nm particles, the implied number flux would be 2.4 × 103 particles cm-2 s-1, which is of the right order of magnitude to explain the detached layer. This hypothesis requires that additional material condense on the meteoritic smoke particles. Unfortunately, the main photochemical products on Titan (HCN, C2H2, C2H6, etc.) do not condense at the temperature and pressure in the detached layer. The saturation mixing ratio for species present in Titan's mesosphere are shown in Fig. 1. The vapour pressure of each species is calculated assuming the HASI vertical temperature profile [4]. The species that come closest to condensing are H2O and C6N2. There is some water vapor present from ablation of icy micrometeorites in Titan's atmosphere, but the mole fraction corresponding to saturation vapor pressure of water at 520 km is 1.6 × 10-2, many orders of magnitude larger than expected [11]. Similarly, the mole fraction of C6N2 at 520 km is expected to be much smaller than the saturation value of 5 × 10-6 [12]. Hence, the growth of particles through condensation cannot explain the detached haze layer. Advection processes in the atmosphere have been related to the formation of the Voyager detached haze layer [13]. In this picture, meridional winds transport the haze particles polewards, constraining them at a specific altitude region, before depositing them at the pole, while the upwelling part of the circulation transports large particles from the main haze layer upwards, enhancing in this way the opacity of the detached haze layer. Yet, the meridional winds are estimated to be υ~3 cm s-1 in the region of the stratospheric zonal jet near 0.1 mbar based on CIRS measurements [14]. Assuming this value to hold in the region of the detached haze layer implies a horizontal motion characteristic time of H~R/v = 108 s. A 40 nm particle has a settling velocity of υ S~1 cm s-1 at 500 km, and the characteristic time to fall 20 km is only 2 × 106 s implying that the particles fall out of the region before they are transported to the pole. Thus, the dynamical explanation for the Voyager detached haze fails by more than a factor of 50 for the detached layer at 520 km. The inefficiency of the above processes to provide enough mass flux to generate the detached layer along with the large mass flux retrieved by the observations [5,6] suggest that haze is formed in Titan's thermosphere by high-energy radical and ion chemistry. In this case the presence of the detached layer could be an optical illusion effect due to the increase of particles' size, along with the decrease of their settling velocity with decreasing altitude. In order to investigate this effect we used a microphysical model [15], which has been extended to describe both spherical and fractal particle growth [16]. We assume a gaussian production profile centered at 800 km and with a column mass production of 4.5 × 10-14 g cm-2 s-1. The particles grow as spheres or fractals depending on the fractal dimension, Df, (Df=2 for fractals and 3 for spheres). Using only spherical particle growth provides a good fit to the extinction observed by UVIS at 187.5 nm [3] above the detached haze layer, while the modeled extinction drops faster than the observed extinction at altitudes below the detached layer (Fig. 2). By setting the transition altitude of spherical to fractal growth at 510 km, the generated fractal particles provide an excellent fit to the observed extinction profile below the detached layer suggesting that the particles present there are indeed of fractal structure. At the same time, the transition from spheres to fractals aggregates, generates a well pronounced minimum in the total simulated extinction, which provides a very good fit to the observed detached haze layer extinction profile [3]. In addition, the calculated mass flux at 520 km is 3.1 × 10-14 g cm-2 s-1, which is within the limits defined by the optical analysis of the detached layer [5,6]. Finally, the calculated monomer size of the particles forming the fractal aggregates is 57 nm, is good agreement with the 50 nm size retrieved by the DISR measurements [17]. Our simulation of Titan's haze particle evolution suggests that the presence of the detached haze layer is due to the transition in the growth of particles from spherical to fractal structure. Further investigation of the processes defining the growth of the particles is required in order to understand why the transition takes place at this region and how the particles produced at higher altitudes are defining the vertical haze opacity in Titan's atmosphere.
Lavvas Panayiotis
Vuitton Veronique
Yelle Roger V.
No associations
LandOfFree
The detached haze layer in Titan's mesosphere: The formation process does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The detached haze layer in Titan's mesosphere: The formation process, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The detached haze layer in Titan's mesosphere: The formation process will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1794005