A Self-Consistent Numerical Magnetohydrodynamic (MHD) Model of Helmet Streamer and Flux-Rope Interactions: Initiation and Propagation of Coronal Mass Ejections (CMEs)

Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Stellar Mass Ejection, Magnetohydrodynamics, Three Dimensional Models, Mathematical Models, Magnetic Flux, Cavities

Scientific paper

We present results for an investigation of the interaction of a helmet streamer arcade and a helical flux-rope emerging from the sub-photosphere. These results are obtained by using a three-dimensional axisymmetric, time-dependent ideal magnetohydrodynamic (MHD) model. Because of the physical nature of the flux-rope, we investigate two types of flux-ropes; (1) high density flux-rope (i.e. flux-rope without cavity), and (2) low density flux rope (i.e. flux-rope with cavity). When the streamer is disrupted by the flux-rope, it will evolve into a configuration resembling the typical observed loop-like Coronal Mass Ejection (CMES) for both cases. The streamer-flux rope system with cavity is easier to be disrupted and the propagation speed of the CME is faster than the streamer-flux rope system without cavity. Our results demonstrate that magnetic buoyancy force plays an important role in disrupting the streamer.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

A Self-Consistent Numerical Magnetohydrodynamic (MHD) Model of Helmet Streamer and Flux-Rope Interactions: Initiation and Propagation of Coronal Mass Ejections (CMEs) does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with A Self-Consistent Numerical Magnetohydrodynamic (MHD) Model of Helmet Streamer and Flux-Rope Interactions: Initiation and Propagation of Coronal Mass Ejections (CMEs), we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A Self-Consistent Numerical Magnetohydrodynamic (MHD) Model of Helmet Streamer and Flux-Rope Interactions: Initiation and Propagation of Coronal Mass Ejections (CMEs) will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1784918

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.