Higher Symplectic Geometry

Physics – Mathematical Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Ph.D. thesis, 160 pages. Department of Mathematics, University of California, Riverside, 2011

Scientific paper

We consider generalizations of symplectic manifolds called n-plectic manifolds. A manifold is n-plectic if it is equipped with a closed, nondegenerate form of degree n+1. We show that higher structures arise on these manifolds which can be understood as the categorified or homotopy analogues of important structures studied in symplectic geometry and geometric quantization. Just as a symplectic manifold gives a Poisson algebra of functions, we show that any n-plectic manifold gives a Lie n-algebra containing certain differential forms which we call Hamiltonian. Lie n-algebras are examples of strongly homotopy Lie algebras. They consist of an n-term chain complex equipped with a collection of skew-symmetric multi-brackets that satisfy a generalized Jacobi identity. We then develop the machinery necessary to geometrically quantize n-plectic manifolds. In particular, just as a prequantized symplectic manifold is equipped with a principal U(1)-bundle with connection, a prequantized 2-plectic manifold is equipped with a U(1)-gerbe with 2-connection. A gerbe is a categorified sheaf, or stack, which generalizes the notion of a principal bundle. Furthermore, over any 2-plectic manifold there is a vector bundle equipped with extra structure called a Courant algebroid. This bundle is the 2-plectic analogue of the Atiyah algebroid over a prequantized symplectic manifold. Its space of global sections also forms a Lie 2-algebra, which we use to prequantize the Lie 2-algebra of Hamiltonian forms. Finally, we introduce the 2-plectic analogue of the Bohr-Sommerfeld variety associated to a real polarization, and use this to geometrically quantize 2-plectic manifolds. The output of this procedure is a category of quantum states. We consider a particular example in which the objects of this category can be identified with representations of the Lie group SU(2).

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Higher Symplectic Geometry does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Higher Symplectic Geometry, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Higher Symplectic Geometry will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-177519

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.