Physics
Scientific paper
Oct 2011
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2011sosyr..45..433k&link_type=abstract
Solar System Research, Volume 45, Issue 5, pp.433-446
Physics
Scientific paper
The effect of the radiation pressure and Poynting-Robertson effect on the evolution of the orbits of geosynchronous satellites is studied, depending on their area to mass ratio. The qualitative changes of the orbital evolution caused by these disturbances are considered. The reflection coefficient of the satellite's surface was assumed to be 1.44. In the vicinity of the stable point with the longitude of 75° the exit from the libration resonance mode was registered when the area to mass ratio value changed from 5.9 to 6.0 m2/kg; in the vicinity of the unstable point at 345° with the area to mass ratio of 1.4 it occurred at 1.5 m2/kg. Re-entry to Earth occurs at values of the area to mass ratio above 32.2 m2/kg, and hyperbolic exit from the low-Earth orbit occurs at values of the area to mass ratio over 5267 m2/kg. At high values of the area to mass ratio, slopes of initially equatorial orbits can reach 49°. It is shown that due to the Poynting-Robertson effect the secular decrease in the semimajor axis of orbit in libration resonance region is 3-4 orders of magnitude less than outside of it.
No associations
LandOfFree
The effect of the radiation pressure on the orbital evolution of geosynchronous objects does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The effect of the radiation pressure on the orbital evolution of geosynchronous objects, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The effect of the radiation pressure on the orbital evolution of geosynchronous objects will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1675227