Physics
Scientific paper
Jul 1983
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1983georl..10..549s&link_type=abstract
Geophysical Research Letters (ISSN 0094-8276), vol. 10, July 1983, p. 549-552.
Physics
7
Earth Magnetosphere, Ion Injection, Magnetic Storms, Particle Trajectories, Scatha Satellite, Convection, Dispersion, Geosynchronous Orbits, Mass Spectrometers, Mathematical Models, Polar Substorms
Scientific paper
A simple particle drift model is used to investigate the applicability of the injection boundary concept to the ion dispersion event observed on March 22 (day 81), 1979. The model consists of a dipole magnetic field with a uniform cross-tail electric field plus a corotation field. A full spectrum of particles from 100 eV to 32 keV is injected at the Kp = 6 - Mauk and McIlwain injection boundary at the time of substorm onset on this day (1100 UT). A new approach is presented for displaying the model-produced ion drift trajectories to make the large scale spatial characteristics of the evolving energy distributions easier to envision and to facilitate the comparison of the model results with experimental observations. The resultant prediction for the dispersion signature is compared with Scatha mass spectrometer measurements, and a 2.0 kV/Re cross-tail convection electric field is found to give a good fit to the observed dispersion signature. It is determined that for this particular event, injection only at that portion of the injection boundary close to 1800 local time is required to produce the dispersion curve.
Johnson Richard G.
Strangeway Robert J.
No associations
LandOfFree
On the injection boundary model and dispersing ion signatures at near-geosynchronous altitudes does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with On the injection boundary model and dispersing ion signatures at near-geosynchronous altitudes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On the injection boundary model and dispersing ion signatures at near-geosynchronous altitudes will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1627545