Vacuum superconductivity, conventional superconductivity and Schwinger pair production

Physics – High Energy Physics – High Energy Physics - Phenomenology

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

15 pages, 6 figures, 6 tables; plenary talk at Quantum Field Theory Under the Influence of External Conditions 2011 (QFEXT11),

Scientific paper

In a background of a very strong magnetic field a quantum vacuum may turn into a new phase characterized by anisotropic electromagnetic superconductivity. The phase transition should take place at a critical magnetic field of the hadronic strength (B_c \approx 10^{16} Tesla or eB_c \approx 0.6 GeV^2). The transition occurs due to an interplay between electromagnetic and strong interactions: virtual quark-antiquark pairs popup from the vacuum and create -- due to the presence of the intense magnetic field -- electrically charged and electrically neutral spin-one condensates with quantum numbers of \rho mesons. The ground state of the new phase is a complicated honeycomblike superposition of superconductor and superfluid vortex lattices surrounded by overlapping charged and neutral condensates. In this talk we discuss similarities and differences between the superconducting state of vacuum and conventional superconductivity, and between the magnetic-field-induced vacuum superconductivity and electric-field-induced Schwinger pair production.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Vacuum superconductivity, conventional superconductivity and Schwinger pair production does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Vacuum superconductivity, conventional superconductivity and Schwinger pair production, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vacuum superconductivity, conventional superconductivity and Schwinger pair production will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-152601

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.